
COMP 1405Z Course Project: Analysis Report Eric Desrosiers

1

COMP 1405Z Course Project – Analysis

Eric Desrosiers

October 26, 2022

Everything in my function works.

File structure:

To help keep everything organized I used many nested directories. This helps limit the amount of

data needed to be stored in any single file. This simplifies the accessibility of information

because I only need the file path. The main directory is crawl_data this keeps all data in one

place. In crawl_data you will find folders with names of urls with the “http:” and “/” replaced by

“}”. There is a file located in crawl_data that stores the original URL and its file path called

filemap. This keeps a structured format for the program with the benefit of me knowing what

folder holds what without having to manually look at the file map. In each URL directory there is

2 other folders: tf for term frequencies and tf_idf for the tf_idf weight of a word. This lets me

have multiple files with the same name because they are in different folders. In each URL

directory there is a file for outgoing links called “out.txt”, incoming links named “in.txt”, and

page rank labeled “pageRank.txt”, they all store their respective data for each URL. Finally,

there is an idf folder in crawl_data that stores the idf of the word in the data set.

Space Complexity

Let N represent the total number of URLs found in crawl.

Let M be the maximum number of words in any given URL.

The worst-case scenario for finding a file in my system is O(NxM). This is because each URL

has the tf and tf_idf directories that have at most M text files, one for each word in the webpage.

COMP 1405Z Course Project: Analysis Report Eric Desrosiers

2

Each item in the N directories have a space complexity of O(1) as they contain a single value.

There are a few exceptions being “out.txt”, “in.txt” and “filemap.txt”. They can have a maximum

space complexity of O(n) because the size of these files is relative to how many URLs are

included in each text file as they are a JSON list. This helps with efficiency because there is less

processing needed, only to read the data in the file.

Crawler (crawl.py):

In this module I decided to have most of the data processing happen. This significantly decreases

the time spent for searchdata and search because they must only look up answers or do minimal

computations. The while loop in my crawl does three major tasks: reading and formatting the

HTML from the URL, locates the words in the web page and creates the new links from the

current web page. For format I decided to remove unnecessary tags like “<html>” which is not

required for my program. Locating words entails processing them and compiling them for

specific calculations like total occurrence of a specific word in a web page. Doing these

calculations while I already have the word cuts back on processing in each calculation.

Function: url_setup():

This function takes in a URL and deletes all the folders and files previously stored during a

crawl. This resets the folder to be used for the current crawl. This function gets called right after

I read a new URL. The time complexity of this function is O(1) because there are no loops in the

function. Since the function is in the main crawl loop overall it is O(N), N for the number or

URLs in the crawl.

COMP 1405Z Course Project: Analysis Report Eric Desrosiers

3

Function: calculate_page_rank():

This is a helper function to keep crawl more organized. The function first creates a matrix of size

N*N. It then creates a map with each index in matrix correspond to a URL in the dictionary

matrixmap, fills out each index with a 1 if the URL at index links to it. Then it calls

pagerank_matrix() from matmult.py to do all the scalar multiplication steps which include,

dividing each row by the number of 1s in that row; multiplying the index by 1- alpha (alpha –

0.01) and adding the adjacency matrix to it (alpha / N). I did all these calculations in one go to

save time. The Next step is the convergence multiplication. This is simply taking a 1-D vector

that sums to 1 and multiply it into the page rank vector. Then I multiply that into the page rank

vector. I keep doing this until the Euclidian distance of the previous iteration and the current

iteration is less than 0.0001. After, I take write each answer to a file under the URL directory

with name “pageRank.txt”.

The runtime complexity of the function is O(N^2) this is because creating the empty matrix is

NxN making it O(N^2). The pagerank_matrix() has a nested for loop also making it O(N^2).

The convergence multiplication step is O(N^2*M) because I have a nested for loop to get the

column and row for the page rank matrix, the M comes from the number of iterations it takes to

reach the threshold of 0.0001. Since I always know it’s a 1-D matrix multiplied by a 2-D matrix I

only need to go through every column in b and row in a. If I used the original matmult module

for this the runtime complexity would have been O(N^3). Finally, writing to the file in O(N)

because we write for N URLS. Since none of the different sections’ complexity is over O(N^2)

the overall runtime complexity is O(N^2*M).

COMP 1405Z Course Project: Analysis Report Eric Desrosiers

4

Function: calculate_tf():

This function calculates the term frequency of each unique word in each document found in

crawl. It can be broken up into two main loops:

The first loop is in the main crawl body. This is the loop that processes each webpage. In the

‘foundwords’ if statement it counts the total occurrence of each word and the total words The

time complexity for this is O(N*M), where n is the total unique URLs and M is the total words.

The second loop is defined in the helper function. It goes through each word found in the given

URL and calculates the term frequency of that word. The time complexity for this function is at

worst O(N*M) as N is the total number of URLs and M is the number of unique words. The tf of

every word in each url is stored in the dictionary tfwords.

Function: calculate_idf():

This function calculates the idf value for each word in the given data set. It does this by taking

the log2 of the total number of websites divided by one plus the number of websites the word

appears in. The time complexity for this function would be O(N) as N is the total number of

unique words found in the crawl stored in the dictionary idfwords. We only need to calculate the

idf value of each word at the end of the crawl.

Function: calculate_tf_idf():

This function takes the term frequency of each word in every URL and idf of the word in the

data set to calculate the tf_idf of the word. I had the url and word joined by a “a” to keep it only

one loop but it is still dependent on how many URLs and word there are. The time complexity of

COMP 1405Z Course Project: Analysis Report Eric Desrosiers

5

this function would be an O(N*M) because it must go through every URL in the crawl (N) and

every word found at that URL (M)

Function: outgoing_inoming_tofile():

This function is used to write all the outgoing and incoming URLs for each URL found in the

crawl. It calls the dictionary in_out and takes each the incoming and outgoing for each URL and

write it to a file. The time complexity for this is O(N) as N is the total number of URLs found

during the crawl. My original implementation was doing a JSON dump with all URLs incoming

and outgoing; this was less efficient because I had to read all the URLs incoming and outgoing

just to get a single URL’s outgoing.

Function: enqueue():

The function takes the url and checks if the program has already crawled through that URL. If

the program hasn’t it adds it to queue. This function is O(1) because it does not contain any

loops; it simply looks if value in list and appends. The dictionary ‘out_in’ used also serves the

purpose of storing the outgoing and incoming links for that url.

The time complexity for the function would be O(1) as checking and adding the url to the queue

is done in constant time. Also adding to the out_in dictionary is also done in O(1) time.

Module: searchdata.py

Since most of the calculations are done in crawler.py the majority of the functions run in O(1)

time as it is reading the data from my O(1) filesystem. These functions include: get_page_rank(),

get_tf(), get_idf(), get_tf_idf().

COMP 1405Z Course Project: Analysis Report Eric Desrosiers

6

Function: get_incoming_links(): get_outgoing_links():

I included these two together because they function the same way but get different data points.

What make these different from the other functions is that the data is of O(N) space as discussed

in my File Structure explanation. This means that it cannot be read in O(1) time. I still used a

JSON list since the program does not need to process the data, only read it and return it.

Module: search.py

General: This module is used to perform a search given a phrase and a optionally a value for

page rank. A lot of the data needed was precalculated in my crawl function such as tf_idf of

words and the page rank value. This helps decrease runtime of this module by having most of the

values needed have a runtime complexity of O(1) because of my file system. My calculations for

search score can be broken down into parts.

Part 1 query_vector_setup():

This helper function’s main purpose is to set up the query vector for the Cosine Similarity

calculation and calculate the left denominator for it. There are two loops involved in this

function. The first loop counts how many words there are, number of each word and the total

words of the query vector. It also creates a list of words that determine the order of the vectors, I

did this so there is consistency in vector indexes. The second loop calculates the tf_idf of each

query word and the left denominator for the cosine similarity calculation. The runtime

complexity of this function is O(N) where N is the number of words in the query. This is because

I have two independent loops that are O(N).

Part 2 returnscores_setup():

This helper functions adds a dictionary entry in the form of the required return format for search,

format being: “ iteration: { ‘url’: url, ‘title’: title, ‘score’: 0.0}. iteration is what URL we are on

since I calculate cosine similarity alongside reading in my tf_idf values. Having the iteration as

my main key is very important when I sort the scores.

Part 3 numerator_right_denominator():

This is another helper function that makes the main body of code easier to follow. Its main goal

is to get the tf_idf of every word in wordOrder to calculate the numerator and right portion of the

denominator for the cosine similarity calculation. I calculated the numerator and denominator in

the loop instead of building a vector list first and then doing calculations because it makes it

COMP 1405Z Course Project: Analysis Report Eric Desrosiers

7

more efficient. The runtime complexity of this function is O(NM) with N being number of pages

and M being words in query. The function itself is O(M), since it is inside of another loop it

makes it O(NM).

Part 4:

The rest of the module deals with calculating the cosine similarity and returning the 10 pages

with the highest score. Before I calculate the score, I check if the left or right denominator equals

0 since anything divided by 0 is 0, if it is zero I append 0 to tuples list and then continue since its

pointless to calculate anything at that point. The calculation part is the numerator divided by both

denominators. Then multiplying it by the page rank is applicable. After I calculate the cosine

similarity, I add it to the returnscores dictionary under ‘score’. I also create a tuple of iteration

and score to help in my sort of the values. The first index in the tuple is the key in the

returnscores dictionary while the second is the score. I sort the list by the second value in the

tuple. Then I return the top pages by searching in the dictionary by the index value as the key.

The runtime complexity of this part is O(N) as N represents the number of URLs found in crawl.

This is because the loop to add the top 10 pages to topScores always runs 10 times making it

O(10), this leads to the calculation portion of this part to be highest factor in complexity.

Therefore, the overall runtime complexity for search.py is O(N).

Module: os_crawl.py

Overall, this module handles most of the reading/writing to files. Most functions in this file is

either O(1) because there is no loop in the function or O(N) if the function is getting repeatedly

called in a loop. The whole module is used for my file structure to keep my program organized.

Function: check_directory():

This function is used to check if that directory exists. Returns True if it exists false otherwise.

Function: create_directory():

This function is used to create a new directory if there already isn’t one with that name.

The delete_directory(): functions is the inverse

Function: create_json_file():

This function takes a directory name and a filename with content and does a JSON dump of the

content. The function first checks if the dir_name is valid before creating the file. The runtime

complexity of this would be O(N) because the amount of data read to the file is proportional to

the size of the data.

Function: load_json_file():

COMP 1405Z Course Project: Analysis Report Eric Desrosiers

8

This function takes a file that stores a JSON string and reads it. This is used in searchdata.py for

get_outgoing_links(): and get_incoming_links(): since the data required for these are stored in a

JSON format. It is also used to read in the filemap.txt data. The runtime complexity of this

function is O(N) for the same reason as the function above.

Function: reset_dir():

This function takes in a directory that contains other directories and deletes everything. It works

by going through every item in the original directory and checks if it’s a folder; if then does the

same thing to the folders found. I created this because I needed a way to do a general reset of

crawl_data directory without the previous tests data being an issue. The runtime complexity of

this module is O(N*M) with N being number of folders in crawl_data and M being the number

of files in tf and tf_idf sub directories.

